As per given by the question,
There are given that a equation,
![2(x-8)=x+5x](https://img.qammunity.org/2023/formulas/mathematics/college/8eyxiprcbv4d7aerq0c5tj3ukd6wqsh1yv.png)
Now,
Solve the given equation to find the value of x, where make the given equation true
![\begin{gathered} 2(x-8)=x+5x \\ 2x-16=6x \\ 2x-16-6x=6x-6x \\ 2x-16-6x=0 \\ -4x-16=0 \\ -4x=16 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rpbhpnnp958gcv1p3vowranjfk379eqw4u.png)
Now,
divide by 4 on both side of the equation
Then,
![\begin{gathered} -4x=16 \\ -(4x)/(4)=(16)/(4) \\ x=-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9l06l9hz7v2n7exgi0tgu5s60ve2x8rslf.png)
Then,
Put the value of x into the given equation, to check that the given equation is true at x=-4.
So,
![\begin{gathered} 2(x-8)=x+5x \\ 2(-4-8)=-4+5(-4) \\ 2(-12)=-4-20 \\ -24=-24 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/snmn8ie3obogn1ks8bfh5tdzo2jppy1cis.png)
Hence, the given equation is true at the point x=-4.
So,
The option A is correct.