Answer
• a) $90.50
,
• b) $29.29
,
• c) $73.63
,
• d) $107.37
Step-by-step explanation
Given the data, we can calculate the mean and standard deviation using a software.
• a)
That software will use the following formula for the mean:
![\bar{x}=\frac{sum\text{ of all observations}}{total\text{ number of observations}}](https://img.qammunity.org/2023/formulas/mathematics/college/u8oczf4n3q14wdy5ah3zivyznxfs1pcdw3.png)
In our case, we have 20 observations, meaning:
![\bar{x}=(95+120+40+...+90+70+100)/(20)=90.5](https://img.qammunity.org/2023/formulas/mathematics/college/r8jcgw1f38bbh7bgr3jv5toxov4lozd7yn.png)
• b)
Similarly, for the standard deviation s the formula is:
![s=\sqrt{\frac{\sum_^(x-\bar{x})}{n-1}}](https://img.qammunity.org/2023/formulas/mathematics/college/41jhloc3chzmalyk8w4a5a69xj8wv3t884.png)
where x represents each observation.
Then, using the software we would get:
![s\approx29.29](https://img.qammunity.org/2023/formulas/mathematics/college/jr0ryhvnaypokf8orzwbywd87q0b4r81g5.png)
Finally, the confidence interval (CI) can be calculated using the following formula:
![CI=\bar{x}\pm Z*(s)/(√(n))](https://img.qammunity.org/2023/formulas/mathematics/college/zfj68vid9jm27tspqqsqpk7olijmgz57oy.png)
Replacing the data we get:
![CI=90.5\pm2.5758*(29.29)/(√(20))\approx90.5\pm16.87](https://img.qammunity.org/2023/formulas/mathematics/college/cm6g6mt154pmoazuyjqt4n403h0x8mp58f.png)
Meaning that the upper limit will be:
![90.5+16.87=107.37](https://img.qammunity.org/2023/formulas/mathematics/college/x128iyasb7rurfayof5696lfym9ca0ivbe.png)
While the lower will be:
![90.5-16.87=73.63](https://img.qammunity.org/2023/formulas/mathematics/college/a7m9bmid7itt9j65wbmu4wphhbc600dpfa.png)