The general equation of a parabola with vertex (h,k) is
![y=C(x-h)^2+k](https://img.qammunity.org/2023/formulas/mathematics/college/vs78by9m3xggjgetat13560tm7uxzaudbv.png)
In our case, we have h = 13 and k =6. So we get the equation
![y=C(x-13)^2+6](https://img.qammunity.org/2023/formulas/mathematics/college/uhpluakflgi0l30xu2g9mnt0maewnn6nt6.png)
Now, to find the value of C, we will use the given y intercept. In the previous equation we should get y=19 if we replace x = 0. So
![19=C(-13)^2+6\text{ = 169C + 6}](https://img.qammunity.org/2023/formulas/mathematics/college/9w0mjec79g71q7vd7vw31b6hvf3ddqrfkl.png)
If we subtract 6 on both sides, we get
![19\text{ - 6 = 13 = 169 C}](https://img.qammunity.org/2023/formulas/mathematics/college/gbnypcefbfyg0jzecaugk31nemwwqiz8jq.png)
If we divide both sides by 169, we get
![C\text{ = }(13)/(169)\text{ = }(1)/(13)](https://img.qammunity.org/2023/formulas/mathematics/college/1sh3ytt95uhyb4daigy8lohpsx8il4qwf6.png)
So the general equation of the given quadratic function is
![y\text{ = }(1)/(13)(x-13)^2+6](https://img.qammunity.org/2023/formulas/mathematics/college/gw7p5nief1fxkqok8etwu71qzk0helyx0v.png)