Given:
The wavelength of the photon is,
![\begin{gathered} \lambda=560\text{ nm} \\ =560*10^(-9)\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/m12snz1zzq86pf0brs6h6fy898r36ccz34.png)
To find:
The frequency, energy, and the position of the photon on the electromagnetic spectrum
Step-by-step explanation:
We know the speed of the electromagnetic wave in a vacuum is,
![c=3*10^8\text{ m/s}](https://img.qammunity.org/2023/formulas/physics/college/lgk79tel101bgigc59k4iszxvi6puv4lvr.png)
If the frequency of the photon is 'f', we can write,
![\begin{gathered} c=f\lambda \\ f=(c)/(\lambda) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/6v1r7yxdjulq0pd5ca9celgi17o0qiro6c.png)
Substituting the values we get,
![\begin{gathered} f=(3*10^8)/(560*10^(-9)) \\ =5.36*10^(14)\text{ Hz} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/wz2nfoynyytzpcv2ivc8ojz68dsrxtx4c2.png)
Hence, the frequency of the photon is,
![5.36*10^(14)\text{ Hz}](https://img.qammunity.org/2023/formulas/physics/college/flc0fp5myrypawovoptazo965i29wwjz9x.png)
The energy of the photon is,
![\begin{gathered} E=hf \\ h=6.62*10^(-34)\text{ J.s \lparen Planck's constant\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/o112wd473v6mssdkoh1i6d1yj4bzy0yxiz.png)
Substituting the values we get,
![\begin{gathered} E=6.62*10^(-34)*5.36*10^(14) \\ =3.55*10^(-19)\text{ J} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/3qrmv2i2zf0jxizwff3mv1f7e3fno7t9kq.png)
Hence, the energy of the photon is,
![3.55*10^(-19)\text{ J}](https://img.qammunity.org/2023/formulas/physics/college/zmyv913yq8kelfz6xc8b8t59y79doykzni.png)
As we know the visible range is,
![400\text{ nm-750 nm \lparen approx\rparen}](https://img.qammunity.org/2023/formulas/physics/college/9wt7qb7c6ba1wcdsq8uwh4v0zh8crej8r3.png)
so, the given wavelength belongs to the visible range of the electromagnetic spectrum.