65.3k views
0 votes
Having trouble with the following questions, help would be appreciated.

Having trouble with the following questions, help would be appreciated.-example-1
User Jbarrameda
by
8.4k points

1 Answer

3 votes

\begin{gathered} a)sin\mleft((\pi)/(2)+x\mright)\cdot\: tan\mleft(x\mright) \\ It\text{ is important to know that} \\ \sin \mleft(s+t\mright)=\sin \mleft(s\mright)\cos \mleft(t\mright)+\cos \mleft(s\mright)\sin \mleft(t\mright) \\ \sin ((\pi)/(2)+x)=\sin ((\pi)/(2))\cos (x)+\cos ((\pi)/(2))\sin (x) \\ we\text{ know that }\sin ((\pi)/(2))=1\text{ and }\cos ((\pi)/(2))=0.\text{ The,} \\ \sin ((\pi)/(2)+x)=1\cdot\cos (x)+0\cdot\sin (x) \\ \sin ((\pi)/(2)+x)=\cos (x) \\ \text{Therefore, let's replace the data} \\ sin((\pi)/(2)+x)\cdot\: tan(x)=\cos (x)\cdot\text{ tan}(x) \\ sin((\pi)/(2)+x)\cdot\: tan(x)=\cos (x)\cdot(\sin(x))/(\cos(x)) \\ sin((\pi)/(2)+x)\cdot\: tan(x)=\sin (x) \end{gathered}


\begin{gathered} b)\text{ }(\cos\left(-x\right))/(\sin\left(-x\right)) \\ It\text{ is important to know that} \\ \cos \mleft(-x\mright)=\cos \mleft(x\mright)\text{ and }\sin (-x)=\text{ -sin(x)} \\ \text{Therefore, let's replace the previous data} \\ (\cos(-x))/(\sin(-x))=(\cos(x))/(-\sin(x))=-(\cos(x))/(\sin(x))=-\cot (x) \end{gathered}


\begin{gathered} c)\text{ }\mleft(1-sin^2\mleft(x\mright)\mright)\cdot\: sec\mleft(x\mright) \\ It\text{ is important to know that} \\ \cos ^2(x)+sin^2(x)=1\to1-sin^2(x)=\cos ^2(x) \\ \text{Therefore, let's replace the previous data} \\ (1-sin^2(x))\cdot\: sec(x)=\cos ^2(x)\cdot\sec (x) \\ (1-sin^2(x))\cdot\: sec(x)=\cos ^2(x)\cdot\frac{1}{\cos\text{ (x)}} \\ (1-sin^2(x))\cdot\: sec(x)=\cos ^{}(x) \\ \end{gathered}


\begin{gathered} d)\sec \mleft(x\mright)-\sin \mleft(x\mright)\tan \mleft(x\mright) \\ \sec (x)-\sin (x)\tan (x)=(1)/(\cos(x))-\sin (x)\cdot(\sin(x))/(\cos(x)) \\ \sec (x)-\sin (x)\tan (x)=(1)/(\cos(x))-(\sin^2(x))/(\cos(x)) \\ \sec (x)-\sin (x)\tan (x)=(1-\sin^2(x))/(\cos(x)) \\ It\text{ is important to know that} \\ \cos ^2(x)+sin^2(x)=1\to1-sin^2(x)=\cos ^2(x) \\ Therefore, \\ \sec (x)-\sin (x)\tan (x)=(1-\sin^2(x))/(\cos(x)) \\ \sec (x)-\sin (x)\tan (x)=(\cos ^2(x))/(\cos (x))=\cos (x) \end{gathered}

User MikeTWebb
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories