Given the coordinates of T, U and V as;
![T(3,12),U(7,2),V(13,13)](https://img.qammunity.org/2023/formulas/mathematics/college/kzdjt80mdknubps2g2kq57ceqbrwdxtbxk.png)
The midpoint of UV is W, which is;
![\begin{gathered} W=((7+13)/(2),(2+13)/(2)) \\ W=((20)/(2),(15)/(2)) \\ W=(10,7.5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ubexm47pnv5zcm40k4426n5wh7nb3p2kwn.png)
Also, W is collinear and between T and X;
Sketching the graph here for clarity, we have;
Also, TX is exactly two times TW;
That means, W is the midpoint of TX, we have;
![\begin{gathered} (10,7.5)=((3+x)/(2),(12+y)/(2)) \\ (3+x)/(2)=10 \\ 3+x=20 \\ x=20-3 \\ x=17 \\ \text{Also;} \\ (12+y)/(2)=7.5 \\ 12+y=15 \\ y=15-12 \\ y=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/evvdw3di6t7mf9a7y1uxbssmmclsbleiio.png)
Hence, the coordinate of X is;
![X(17,3)](https://img.qammunity.org/2023/formulas/mathematics/college/a4blhfj6zps7h5o8wxq0xui846lxgvhf1k.png)