Type 1
this is a right triangle, the we can apply pythagoras
![a^2+b^2=h^2](https://img.qammunity.org/2023/formulas/mathematics/college/8y42nfq1foypp0ooaxy3jwjni42acaxbz7.png)
where a and b are sides and h the hypotenuse on this case L(leash)
replacing
![5^2+7^2=L^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/xewan7jrihy4so6tzgp4h94jxwxc2l361o.png)
simplify
![\begin{gathered} 25+49=L^2 \\ 74=L^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/wn7t78ptjsm3pq96aquzfsenjmk9jcrrie.png)
now solve for L
![L=\sqrt[]{74}\approx8.6](https://img.qammunity.org/2023/formulas/mathematics/high-school/uc8ghfsgo3imnwg3yr8raingh9o4p1twyz.png)
The leash is 8.6ft
Type 2
we have a right triangle too
on this case the missing number is a side, not hypotenuse
remember pythagoras
![a^2+b^2=h^2](https://img.qammunity.org/2023/formulas/mathematics/college/8y42nfq1foypp0ooaxy3jwjni42acaxbz7.png)
and replace for this case
![x^2+19.5^2=20^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/mq9wp56tr1sun0jzfekepo2mj33pjpax0n.png)
simplify
![\begin{gathered} x^2+380.25=400 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8innah1u8da6p7a1tk2pypp7fslil549ir.png)
and solve for x
![\begin{gathered} x^2=19.75 \\ x=\sqrt[]{19.75}\approx4.44 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/oubvjsppwfm1mthdna1zp4a6aym96pdv4x.png)
then le length of the side x is 4.44ft