We have a square
![EF=10\sqrt[]{2}](https://img.qammunity.org/2023/formulas/mathematics/college/5qcaqvmemaxzqe736qlginrmbnz7e10mf4.png)
we can use the Pythagorean theorem in order to find y
![3y+11=\sqrt[]{(10\sqrt[]{2})^2+(10\sqrt[]{2})^2}=20](https://img.qammunity.org/2023/formulas/mathematics/college/6h43w98e02vxunpia5ks0j6byktzxcypon.png)
then we clear y
![\begin{gathered} 3y+11=20 \\ 3y=20-11 \\ 3y=9 \\ y=(9)/(3) \\ y=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a3e1pkgt4iw7aa21zhif1ht5x242v8czio.png)
In order to find x, we need to remember the interior angles of a square are equals to 90° and the diagonals divided this angle into equal angles in other words the value is 45°
so we have the next equation
![7x-25=45](https://img.qammunity.org/2023/formulas/mathematics/college/t2t960lz5fzpgbvy9vbe6lladluth384hr.png)
![\begin{gathered} 7x=45+25 \\ 7x=70 \\ x=(70)/(7) \\ x=10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9wdbc4fuj36mlvtomevldkhk20cz4vbus7.png)
the value of x=10