42.8k views
2 votes
Use interval notation to represent all values of x satisfying the given conditions

Use interval notation to represent all values of x satisfying the given conditions-example-1
User Angelita
by
8.9k points

1 Answer

4 votes

Given: The equation and inequalty below


\begin{gathered} y=|3x-12|+1 \\ y<5 \end{gathered}

To Determine: The values of x satisfying the given conditions using interval notation

Solve the first equation


y=|3x-12|+1
\mathrm{Domain\: of\: }\: \mleft|3x-12\mright|+1\: \colon\quad \begin{bmatrix}\mathrm{Solution\colon}\: &amp; \: -\infty\: The range[tex]\mathrm{Range\: of\: }\mleft|3x-12\mright|+1\colon\quad \begin{bmatrix}\mathrm{Solution\colon}\: &amp; \: f\mleft(x\mright)\ge\: 1\: \\ \: \mathrm{Interval\: Notation\colon} &amp; \: \lbrack1,\: \infty\: )\end{bmatrix}

The y-intercept, make x = 0


\begin{gathered} y=\mathrm{\: }\mleft|3x-12\mright|+1 \\ y=|3(0)-12|+1 \\ y=|0-12|+1 \\ y=|-12|+1 \\ y=12+1=13 \\ T_{he\text{ coordinate of the y intercept is}} \\ (0,13) \end{gathered}

The minimum point


\begin{gathered} T_{he\text{ x coordinate of the minimum point}} \\ 3x-12=0 \\ 3x=12 \\ x=(12)/(3)=4 \\ T_{he\text{ y cordinate of the minimum point}} \\ y=|3x-12|+1 \\ y=|3(4)-12|+1 \\ y=|12-12|+1 \\ y=1 \\ T_{he\text{ coordinate of the minimum point is}}=(4,1) \end{gathered}

Let us graph the two equation as shown below

From the graph above, the set of values of x that satisfies the equation and inequality can be seen from point A to point B.

Hence,

The solution is 2.667 < x < 5.333

Using interval notation we have (2.667, 5.333)

Use interval notation to represent all values of x satisfying the given conditions-example-1
User Agoldencom
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories