179k views
1 vote
What is the radius of a sectorradians and thesq units??when 0 = 23area is100TT27r =

What is the radius of a sectorradians and thesq units??when 0 = 23area is100TT27r-example-1
User Jfgrang
by
5.7k points

1 Answer

3 votes

Given: An sector with a central angle-


\theta=(2\pi)/(3)

And area,


Area=(100\pi)/(27)\text{ sq units}

Required: To determine the radius of the sector.

Explanation: The area of the sector when the central angle is in radians is given by the formula-


Area=(1)/(2)r^2\theta\text{ sq units}

Substituting the values into the formula as-


(100\pi)/(27)=(1)/(2)((2\pi)/(3))r^2

Further solving for 'r' as follows-


\begin{gathered} r=\sqrt{(100)/(9)} \\ r=(10)/(3)\text{ units} \end{gathered}

Final Answer: The radius of the sector is-


r=(10)/(3)\text{ units}

User Miwoe
by
5.5k points