98.1k views
1 vote
Use the data below to complete the following calculation

User Theblang
by
7.9k points

1 Answer

3 votes

EXPLANATION

Assuming the given table, we can compute the calculations as shown as follows;


\sum ^{}_{}xy=61\cdot65+39\cdot75+98\cdot100+21\cdot93+75\cdot95+33\cdot34+76\cdot15+43\cdot68
\sum ^{}_{}xy=3965+2925+9800+1953+7125+1122+1140+2924

Adding terms:


\sum ^{}_{}xy=30954
\sum ^{}_{}x^2y=61^2\cdot65+39^2\cdot75+98^2\cdot100+21^2\cdot93+75^2\cdot95+33^2\cdot34+76^2\cdot15+43^2\cdot68

Computing the powers:


\sum ^{}_{}x^2y=3721\cdot65+1521\cdot75+9604\cdot100+441\cdot93+5625\cdot95+1089\cdot34+5776\cdot15+1849\cdot68

Multiplying terms:


\sum ^{}_{}x^2y=241865+114075+960400+41013+534375+37026+86640+125732

Adding terms:


\sum ^{}_{}x^2y=2141126

Now, we need to compute the third equation:


(\sum ^{}_{}xy)^2=(61\cdot65+39\cdot75+98\cdot100+21\cdot93+75\cdot95+33\cdot34+76\cdot15+43\cdot68)^2

Multiplying terms:


(\sum ^{}_{}xy)^2=(3965+2925+9800+1953+7125+1122+1140+2924)^2

Adding numbers:


(\sum ^{}_{}xy)^2=(30954)^2

Computing the power:


(\sum ^{}_{}xy)^2=958150116

User Elad
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories