155k views
4 votes
Find the exact value by using a half angle identity.tan 75°

User Ariaramnes
by
5.9k points

1 Answer

5 votes

The trigonometric function is given as


\tan 75^(\circ)

Apply the half angle identity to find the value of tan 75 ,


\tan ((u)/(2))=(\sin u)/(1+\cos u)

Here,


\tan ((150^(\circ))/(2))=(\sin150^(\circ))/(1+cos150^(\circ))
\tan (75^(\circ))=\frac{(1)/(2)}{1-\frac{\sqrt[]{3}}{2}}=\frac{(1)/(2)}{\frac{2-\sqrt[]{3}}{2}}^{}
\tan 75^(\circ)=\frac{1}{2-\sqrt[]{3}}

Now rationalize the function.


\tan 75^(\circ)=\frac{1}{2-\sqrt[]{3}}*\frac{2+\sqrt[]{3}}{2+\sqrt[]{3}}=\frac{2+\sqrt[]{3}}{4-3}=\frac{2+\sqrt[]{3}}{1}

Again simplify the trigonometric function,


\tan 75^(\circ)=2+1.732=3.732

Hence the answer is 3.732.

User Shaun Bouckaert
by
5.8k points