Answer:
![y=-(4)/(5)x-(8)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/9qt58upui1j6ym6aarrofuwdtwjrh7tx3h.png)
First, let us find the slope of the line using the following equation:
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/78uaqhwt0aws3qfwxigaftpihnmb1gzxtp.png)
Using the points (3, -4) and (8, -8)
![m=(y_2-y_1)/(x_2-x_1)\Rightarrow m=(-8-(-4))/(8-3)](https://img.qammunity.org/2023/formulas/mathematics/college/brmduiwgia15mvd1oceodlvrqtev5bdspt.png)
![m=(-8+4)/(8-3)=(-4)/(5)\Rightarrow m=-(4)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/q7x9zm6233ddsxg66x4r161dch2qac1zfs.png)
Now that we found the slope of the line, we are going to use the following equation to solve for the equation of the line:
![y-y_1=m(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/csobd57zth7rh9k4hz9amldzpq2owf0z4j.png)
Using the point (3, -4)
![y-y_1=m(x-x_1)\Rightarrow y-(-4)=-(4)/(5)(x-3)](https://img.qammunity.org/2023/formulas/mathematics/college/7bbk4p7ip7basyiwyk8fdvxi6nbibgk3jg.png)
![y+4=-(4)/(5)x+(12)/(5)\Rightarrow y=-(4)/(5)x+(12)/(5)-4](https://img.qammunity.org/2023/formulas/mathematics/college/mwqe7r2fq7ex5c2lt0zvl1h96pjebkeco6.png)
![y=-(4)/(5)x-(8)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/9qt58upui1j6ym6aarrofuwdtwjrh7tx3h.png)
Therefore, the equation of the line that passes through the points (3, -4) and (8, -8) is:
![y=-(4)/(5)x-(8)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/9qt58upui1j6ym6aarrofuwdtwjrh7tx3h.png)