![\begin{gathered} 4x-12=-1 \\ 6x+4y=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yrwj0d5jkg4qlcvc74k45h1edoyqk4sidp.png)
We want to solve this system using a matrix.
The first step is write a matrix whose each line will correspond to a equation and each term will correspond to a coeficient. The terms of the firs colum will correspond to the coeficients of x, the terms of the second colum will correspond to the coeficients of y and the terms of the third colum will correspond to the independent term in the right side of the equation:
![\begin{bmatrix}{4} & {-12} & {-1} \\ {6} & {4} & {4} \\ {\square} & {\square} & {\square}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/zkvmq5f50vwovjgv1yonfi02msmrrhmi4t.png)
Now, we must conduct operations to escalonate the terms corresponding to the coefficients multiplying x and y
First, we multiply the second line by 3:
![\begin{bmatrix}{4} & {-12} & {-1} \\ {18} & {12} & {12} \\ {\square} & {\square} & {\square}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/jwlb781ogpls6tn85la8sas0kz69yk8p0c.png)
Then, we add line 2 to line 1:
![\begin{bmatrix}{22} & {0} & {11} \\ {18} & {12} & {12} \\ {\square} & {\square} & {\square}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/blva5l9n5wglh7tjiouyz7jt7558sxarqc.png)
Now, we divide line 1 by 22
![\begin{bmatrix}{1} & {0} & {(1)/(2)} \\ {18} & {12} & {12} \\ {\square} & {\square} & {\square}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/lbes2xac9oyfic050zoehgr4inrf0lt4mp.png)
Then, we subtract 18 times line 1 from line 2:
![\begin{gathered} \begin{bmatrix}{1} & {0} & {(1)/(2)} \\ {18-18} & {12} & {12-(18)/(2)} \\ {\square} & {\square} & {\square}\end{bmatrix} \\ \begin{bmatrix}{1} & 0 & {(1)/(2)} \\ {0} & {12} & {3} \\ {\square} & {\square} & {\square}\end{bmatrix} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i7h2kyviyr6hwt4pbg89gi3yif5wua778j.png)
Now, we divide line 2 by 12:
![\begin{bmatrix}{1} & {0} & {(1)/(2)} \\ {0} & {1} & {(1)/(4)} \\ {\square} & {\square} & {\square}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/1o78dctb663xdrbqbomcb5ud4d8fmw1bzm.png)
Finally, we can rewrite these terms in the form of equations and obtain the solution:
![\begin{gathered} x=(1)/(2) \\ y=(1)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/11adce73gq9b1dad91b312tdj1eekrgtrt.png)