30.6k views
4 votes
Let g(x) = 3x, and h(x) = x2 + 1

Let g(x) = 3x, and h(x) = x2 + 1-example-1

1 Answer

3 votes

Given:


\begin{gathered} g(x)=3x \\ \\ h(x)=x^2+1 \end{gathered}

Find:


\begin{gathered} g(-1),\text{ }h(3),\text{ }g(g(-1)),\text{ }h(h(3)),\text{ }g(x)* h(x),\text{ }g(-2)* h(-2) \\ \end{gathered}

Sol:

(a)

Value of g(-1)


\begin{gathered} g(x)=3x \\ \\ g(-1)=3*(-1) \\ \\ g(-1)=-3 \\ \end{gathered}

(b)

Value of h(3) is:


\begin{gathered} h(x)=x^2+1 \\ \\ h(3)=3^2+1 \\ \\ h(3)=9+1 \\ \\ h(3)=10 \end{gathered}

(c)

Value of g(g(-1))


\begin{gathered} g(x)=3x \\ \\ g(g(x)) \\ \text{ } \\ \text{ Then }x=g(x) \\ \\ g(g(x)=3(3x) \\ \\ g(g(x))=9x \end{gathered}

So the value of g(g(-1)) is:


\begin{gathered} g(g(x))=9x \\ \\ g(g(-1))=9(-1) \\ \\ g(g(-1))=-9 \end{gathered}

(c)

Value of h(h(3)) is:


\begin{gathered} h(x)=x^2+1 \\ \\ x=h(x) \\ \\ \text{ Then,} \\ \\ h(h(x))=(x^2+1)^2+1 \\ \\ h(h(x))=x^4+2x^2+2 \\ \\ \end{gathered}

So, the value of h(h(3)).


\begin{gathered} h(h(x))=x^4+2x^2+2 \\ \\ h(h(3))=3^4+2(3)^2+2 \\ \\ =81+18+2 \\ \\ =101 \end{gathered}

(d)

Value of g(x)*h(x)


\begin{gathered} g(x)=3x \\ \\ h(x)=x^2+1 \\ \\ g(x)*h(x)=3x(x^2+1) \\ \\ g(x)^*h(x)=3x^3+3x \end{gathered}

(e)

Value of g(-2)*h(-2)


\begin{gathered} g(x)^*h(x)=3x^3+3x \\ \\ g(-2)^*h(-2)=3(-2)^3+3(-2) \\ \\ =-24-6 \\ \\ =-30 \end{gathered}

User Sagar Kulkarni
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories