9. What is the length of AB? Explain your reasoning.
Let
A(-5,5)
B(-5,-1)
to find the length you can use the distance between two points formula
![\text{if P1(x}_1,y_1)\text{ and P2(x}_2,y_2)](https://img.qammunity.org/2023/formulas/mathematics/college/bqkk9iu8y8utf0x25iusqzmzizqkgl1jrr.png)
the distance between P1 and P2 is
![\begin{gathered} d=\sqrt{(y_2-y_1)^2+(x_2-x_1)^2_{}_{}} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kzy1bpet85mi8t6jne3r7rkmqcpjg9yy1j.png)
Step 1
put the values into the equation
![\begin{gathered} d=\sqrt{(y_2-y_1)^2+(x_2-x_1)^2_{}} \\ d=\sqrt{(-1-(5))^2+(-5-(-5))^2_{}} \\ d=√((-6)^2+(0)^2) \\ d=√(36) \\ d=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/guxtlkzr1jshcltz0sytfhzlyvhiowni2j.png)
so, the length of AB is 6 units
10. What is the midpoint of CD? Justify your answer.
![\begin{gathered} \text{let P1(x}_1,y_1)andP2(x_2,y_2) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hv106kq49e8mquktqa2epy49dcobzpgm7g.png)
the midpoint of P1 and P2 is
![M=((x_1+x_2)/(2),(y_1+y_2)/(2))](https://img.qammunity.org/2023/formulas/mathematics/high-school/azlty9lox0olsrspemwjd5v1udpdz43v6k.png)
Step 2
Put the values of C and D into the equation
let P1=C and P2=D
C(-3,4) and D(6,3)
![\begin{gathered} M=((-3+6)/(2),(4+3)/(2)) \\ M=((3)/(2),(7)/(2)) \\ M=(1.5,\text{ 3.5)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/17rqt16wrykjkrn5lgruwc757f28cuiikp.png)
so, the midpoint is (1.5,3.5)
I hope this helps you