123k views
1 vote
Let f (x) = cos 3x. Cos 2x Determine the primitive function with F (Xo) = √2

1 Answer

7 votes

ANSWER:

0.5647

Explanation:

We have the following function:


f(x)=\cos 3x\cdot\cos 2x

The primitive function is the definite integral of the function, evaluated from 0 to 2.

Therefore, we calculate the integral and evaluate:


\begin{gathered} \int ^(√(2))_0\mleft(\cos 3x\cdot\cos 2x\mright)dx \\ \text{ Let's rewrite the function as follows:} \\ \cos \: \: 3x\cdot\cos \: \: 2x=(\cos(3x+2x)+\cos(3x-2x))/(2) \\ \cos \: \: 3x\cdot\cos \: \: 2x=(1)/(2)\cdot(\cos 5x+\cos x) \\ \int ^{\sqrt[]{2}}_0((1)/(2)\cdot(\cos 5x+\cos x))dx=(1)/(2)\int ^{\sqrt[]{2}}_0\cos 5xdx+(1)/(2)\int ^{\sqrt[]{2}}_0\cos xdx \\ \text{ we integrate:} \\ \int ^{\sqrt[]{2}}_0\cos 5xdx=(1)/(5)\cdot\sin (5\sqrt[]{2})-(1)/(5)\cdot\sin (5\cdot0)=0.1417-0=0.1417 \\ \int ^{\sqrt[]{2}}_0\cos xdx=\sin (\sqrt[]{2})-\sin (0)=0.98776-0=0.98776 \\ \int ^{\sqrt[]{2}}_0(\cos 3x\cdot\cos 2x)dx=(1)/(2)(0.1417+0.98776) \\ \int ^{\sqrt[]{2}}_0(\cos 3x\cdot\cos 2x)dx=0.5647 \end{gathered}

The result is 0.5647

User LionKing
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories