Given the function:
![f(x)=3x^5-10x^3](https://img.qammunity.org/2023/formulas/mathematics/college/ggpgwx6q9ou1ex0k2kpgr615bvcfkkzsuk.png)
1. You need to find the first derivative.
Remember the Power Rule Derivative:
![(d)/(dx)(x^n)=nx^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/7ah5riw5p3zj85osz362gbtgmlebsg09uy.png)
Then:
![f^(\prime)(x)=(3)(5)x^(5-1)-(3)(10)x^(3-1)](https://img.qammunity.org/2023/formulas/mathematics/college/jeeyne7ih9kl8kcbhmypi4ymjaapng7ews.png)
![f^(\prime)(x)=15x^4-30x^2](https://img.qammunity.org/2023/formulas/mathematics/college/5vksh3sm0jxuoc9m4t18gebdnzb05snjoa.png)
2. Make the first derivative equal to zero:
![15x^4-30x^2=0](https://img.qammunity.org/2023/formulas/mathematics/college/yolwff5i3c1xal2vo39a3cjnopyyciedlq.png)
3. Solve for "x":
- Identify the Greatest Common Factor (the largest factor the terms have in common):
![GCF=15x^2](https://img.qammunity.org/2023/formulas/mathematics/college/2xt7ofyv7kejrcqgse8mupdacefehfr0wx.png)
- Factor the Greatest Common Factor out:
![15x^2(x^2-2)=0](https://img.qammunity.org/2023/formulas/mathematics/college/toos385b805v7l0qlvsp8ly1bmywkzultz.png)
- Notice that you can divide the equation into two parts and solve for "x":
![\begin{gathered} 15x^2=0\Rightarrow x=(15)/(0)\Rightarrow x=0 \\ \\ x^2-2=0\Rightarrow x=\pm√(2)\Rightarrow\begin{cases}x={-√(2)} \\ x={√(2)}\end{cases} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dr37sfebt8p9d7j3zw09m5cdncs74jle77.png)
4. Find the second derivate by derivating the first derivative:
![f^{^(\prime)\prime}(x)=(15)(4)x^(4-1)-(30)(2)x^(2-1)](https://img.qammunity.org/2023/formulas/mathematics/college/vmaqj1b9npditda6rr6evl8ixng8cixflf.png)
![f^{^(\prime)\prime}(x)=60x^3-60x^](https://img.qammunity.org/2023/formulas/mathematics/college/qa7hz16s5enaxz6tix63795odzs8snhffo.png)
5. Substitute the values of "x" found in Step 3 into the second derivative and evaluate:
![f^{^(\prime)\prime}(0)=60(0)^3-60(0)=0](https://img.qammunity.org/2023/formulas/mathematics/college/skyqyr4eojik41q8e8ujb4s44j8j4jmtuw.png)
![f^{^(\prime)\prime}(-√(2))=60(-√(2))^3-60(-√(2))\approx-84.9](https://img.qammunity.org/2023/formulas/mathematics/college/9plh0y36vnf1w2sbdk300pvzzh4mpyrtod.png)
![f^{^(\prime)\prime}(√(2))=60(√(2))^3-60(√(2))\approx84.9](https://img.qammunity.org/2023/formulas/mathematics/college/7a9fdc0p9h8pgerlozxv540gen7uvjvdq2.png)
6. According to the Second Derivative Test:
- If:
![f^(\prime)^(\prime)(x)>0](https://img.qammunity.org/2023/formulas/mathematics/college/62mn7tq3vuh9s27nhhevg66ijihybgq5uv.png)
Then the function has a local minimum at that x-value.
- If:
![f^(\prime\prime)(x)<0](https://img.qammunity.org/2023/formulas/mathematics/college/bxiofh9hxf5h850dnfetm7fivqbhkek1d8.png)
Then the function has a local maximum at that x-value.
In this case:
![f(-√(2))<0](https://img.qammunity.org/2023/formulas/mathematics/college/gnzfp3q88m9u40a06dcljn0czh8b0b8skq.png)
![f(√(2))>0](https://img.qammunity.org/2023/formulas/mathematics/college/8mtdvqcbbpep837f3sn9s2amcrelobmlas.png)
Hence, the answer is:
- Local Minimum at:
![x=√(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/2qeg34iwtmo4qy95qqn4co58zdwpuzopfw.png)
- Local Maximum at:
![x=-√(2)](https://img.qammunity.org/2023/formulas/mathematics/college/m55en299hqhgbcdlq8sqjisn2utb36qrxy.png)