Given:
Numbers in the spinner = 1 to 9 ==> 9 numbers
Possibilities in a coin == Head and tail
Given that you spin the spinner flip a coin then spin the spinner again, let's find the probability of spinning a 4, flipping head, then spinning a 7.
We have the following:
• Probability of spinning a 4:
![P(4)=(1)/(9)](https://img.qammunity.org/2023/formulas/mathematics/college/aw37abj2dq7abtwlifm7dybiyyvl0cpm2t.png)
• Probability of flipping head:
![P(head)=(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/edgsw7wrpydw5xj0mtus5i9j43z1era515.png)
• Probability of spinning a 7:
![P(7)=(1)/(9)](https://img.qammunity.org/2023/formulas/physics/high-school/t4k7kmklhlka1e9fv8t3j9vr1ppkmy3sd2.png)
Hence, we have:
![\begin{gathered} P=P(4)*P(head)*P(9) \\ \\ P=(1)/(9)*(1)/(2)*(1)/(9) \\ \\ P=(1*1*1)/(9*2*9) \\ \\ P=(1)/(162) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2cwm31sa5rhdbcxd2ka6dqpcmuknriv1kr.png)
Therefore, the probability is:
![(1)/(162)](https://img.qammunity.org/2023/formulas/mathematics/college/x51qllnkdegcrzki8qyjgn23n2a3vr8zks.png)
ANSWER:
![(1)/(162)](https://img.qammunity.org/2023/formulas/mathematics/college/x51qllnkdegcrzki8qyjgn23n2a3vr8zks.png)