We need to calculate a system of equations using the general formula of the circle
![x^2+y^2+Dx+Ey+F=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/y8b95lsmeta6ihwa7h15lsiowbj1jyas3y.png)
for the point (-5, 5)
x=-5
y=5
the first equation is
![\begin{gathered} (-5)^2+(5)^2-5D+5E+F=0 \\ 25+25-5D+5E+F=0 \\ 50-5D+5E+F=0 \\ -5D+5E+F=-50 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q6f7scr90nuni55ji5gvqjg3o8s246nxoo.png)
for the point (-5,-3)
x=-5
y=-3
the second equation is
![\begin{gathered} (-5)^2+(-3)^2-5D-3E+F=0 \\ 25+9^{}-5D-3E+F=0 \\ 34^{}-5D-3E+F=0 \\ -5D-3E+F=-34 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4xjch82a5uopv5l8wqybrnckpr8sij9j19.png)
for the point (7, -3)
x=7
y=-3
the third equation is
![\begin{gathered} (7)^2+(-3)^2+7D-3E+F=0 \\ 49+9+7D-3E+F=0 \\ 58+7D-3E+F=0 \\ 7D-3E+F=-58 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s13h0eiiez7odbap06xoozrb4o3lb47dgq.png)
Then we solve the system of equations, and we obtain
D=-2
E=-2
F=50
The equation of the circle that passes through these points is
![x^2+y^2-2x-2y-50=0](https://img.qammunity.org/2023/formulas/mathematics/college/ln2hnsr67s4go5scy3ubektr3tzc99c0hi.png)
for calculate the coordinates of the center of the circle we have
D=-2h
h is the x coordinate of the center of the circle
D=-2
we isolate the h
h=-2/-2=1
E=-2k
k is the y coordinate of the center of the circle
E=-2
we isolate the k
k=-2/-2=1
the center of the circle is (h,k)=(1,1)