Step 1: Determine if if the infinite geometric series is divergence or convergence
If the common ratio is greater than or equals 1, then it is divergence but if r is less than 1, it is convergence.
![\begin{gathered} \text{divergence if }\lvert r\rvert\ge1 \\ \text{convergence if }\lvert r\rvert<1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yggoqvp9k3u0er8cbtfm0v32ggkm4spdpi.png)
Step 2: Find common ratio r
![\begin{gathered} r=(a_2)/(a_1)=(a_3)/(a_2)_{} \\ r=-(1)/(27)*(81)/(1)=-(81)/(27)=-(4)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2ipjo4wwhfngrtdfm9ip14syqpuw4bhq74.png)
![\lvert r\rvert=\lvert-(4)/(3)\rvert=(4)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/m8j4k2zu0gz5e6eq64r3qpmarp7xb6ikjr.png)
From the value of the absolute value of r gotten, it can be observed that r is greater than 1 or equals 1, hence it is divergence.
Hence, the series will have an infinitely large sum. The correct option is FALSE