Part a.
From the given information, we have that
![\begin{gathered} \mu=25300 \\ \sigma=11500 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jir7ma8kgl7o7war1mg24qdf9gtvk4pm7p.png)
Then, the distribution of X
![N(\mu,\sigma)](https://img.qammunity.org/2023/formulas/mathematics/college/sor9234tmn7h6unsoef1fukblqa39bmmbj.png)
is given by:
![N(25300,11500)](https://img.qammunity.org/2023/formulas/mathematics/college/1svjwwsr5kpnf3md93v0zeffipqceh657p.png)
Part b.
In this case, we need to find the following probability:
![P(22600then we need to find the corresponding z values for there values, that is, [tex]z=(22600-25300)/(11500)=-0.23478](https://img.qammunity.org/2023/formulas/mathematics/college/g0zw35ir1lfbjq4006x9u8ayw7odj26fsi.png)
and
![z(32750-25300)/(11500)=0.64782](https://img.qammunity.org/2023/formulas/mathematics/college/kcpmlvqmcb8hxkh3xsf3lwys8868b12jz4.png)
So we need to find on the z-table the following probability:
![P(-0.23478which gives 0.33426<p>Therefore, by rounding to 4 decimal places, <strong>the answer for part b is: 0.3343.</strong></p><p>Part c.</p><p>The middle 20% of college graduate loans debt lies within the interval 10% below the mean and 10% over the mean. Then, the z-value for this interval is z=+/- 0.253</p><p></p><p>Then, we can find the lower and upper bound for this interval as</p>[tex]\begin{gathered} Lower=\mu-z*\sigma=25300-0.253*11500 \\ Upper=\mu+z\sigma=25,300+0.253*11,500 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yvhrb8fqqw1mjjibmu8s1n8u7sb6mnle4b.png)
which gives
![\begin{gathered} Lower=22390.5 \\ Upper=28209.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4iwdi4tivpo7elv2pzqsm4877747vy940b.png)
Therefore, by rounding up to the neares dollar, the answers for part c are:
![\begin{gathered} Low:\text{ \$22,391} \\ High:\text{ \$28,210} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/al1wh5gqchbpjyjzknvjc3950gbrg8hh1x.png)