106k views
4 votes
Determine all solutions to the equation 2cos2 x = 1 − sin x on the interval [0, 2π).

Determine all solutions to the equation 2cos2 x = 1 − sin x on the interval [0, 2π).-example-1
User Mistercx
by
4.0k points

1 Answer

3 votes

Given:

Expression as


2cos^2x=1-sinx

To find:

Determine all solutions to the equation.

Step-by-step explanation:

If


Sin\theta=Sin\alpha

then


\theta=n\pi+(-1)^n\alpha

Solution:

First start as:


\begin{gathered} 2Cos^2x-1+sinx=0 \\ 1+sinx-2sin^2x=0 \\ sinx=(-1)/(2),sinx=1 \end{gathered}

So, solution will be


x=(\pi)/(2),(7\pi)/(6),(11\pi)/(6)

Hence, this is the solutions.

User Marat Faskhiev
by
4.2k points