Given that
We have some logarithmic values. And we have to find a log value.
Explanation -
The values that are given are
![\begin{gathered} \log_(10)2=0.3010 \\ and \\ \log_(10)36=1.5563 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/odpmu2qwhrq8rc3jykxvjh6qrajp3ht9ht.png)
And we have to find the value of
![\log_(10)36^3=?](https://img.qammunity.org/2023/formulas/mathematics/college/stye7rv8fvq4jjczgo59q5iilbbq8kpudb.png)
So the formula we will use here will be
![\log_(10)a^n=n*\log_(10)a](https://img.qammunity.org/2023/formulas/mathematics/college/7hizlvpgxee6wpvf0lhr5ffh6akrb6dmai.png)
Therefore on using the formula we have
![\begin{gathered} \log_(10)36^3=3*\log_(10)36 \\ \\ substituting\text{ the value of }\log_(10)36\text{ we have} \\ \\ \log_(10)36^3=3*1.5563 \\ \log_(10)36^3=4.6689 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a72dwrvjm10nyp6doobm2vcr0m1asufaxe.png)
So the answer is 4.6689
Final answer -
Hence the final answer is 4.6689