147k views
0 votes
Solve the trigonometric equation for all values 0 ≤ 3 < 2π. 3 tan x + √3 = 0

1 Answer

0 votes

Given the following equation:


3\tan x+\sqrt[]{3}=0

first, we can substract the square root of 3 on both sides to get:


\begin{gathered} 3\tan x+\sqrt[]{3}-\sqrt[]{3}=0-\sqrt[]{3} \\ \Rightarrow3\tan x=-\sqrt[]{3} \end{gathered}

if we divide by 3 both sides of the equation, we get:


\begin{gathered} (3\tan x=-\sqrt[]{3})\cdot(1)/(3) \\ \Rightarrow(3)/(3)\tan x=-\frac{\sqrt[]{3}}{3} \\ \Rightarrow\tan x=-\frac{\sqrt[]{3}}{3} \end{gathered}

using the inverse of the function tangent, we can solve for x:


\begin{gathered} \tan x=-\frac{\sqrt[]{3}}{3} \\ \Rightarrow x=\tan ^(-1)(-\frac{\sqrt[]{3}}{3})=-(\pi)/(6) \\ \end{gathered}

since we have that x = -pi/6, but we want the values that are betwen 0 and 2 pi, we have to convert using the following expression:


x+\pi=-(\pi)/(6)+\pi=(-\pi+6\pi)/(6)=(5\pi)/(6)

therefore, x = 5/6 pi

User MarvMind
by
3.9k points