we have the inequality
![|2x-2|+4>12](https://img.qammunity.org/2023/formulas/mathematics/college/cp8ezxujegomlrslki3v159wbep6751v7h.png)
solve for x
subtract 4 both sides
![\begin{gathered} |2x-2|+4-4>12-4 \\ |2x-2|>8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gvy3rypyh40fwgyzak4vjdnajfivmoj5i1.png)
step 1
Find the first solution (positive case)
![\begin{gathered} +(2x-2)>8 \\ 2x\text{ >8+2} \\ 2x\text{ > 10} \\ x>5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wavoy0s37o768nu8ygl964yy1qw3vgwgpe.png)
the solution of the first case is the interval (5, infinite)
step 2
Find the second solution (negative case)
![\begin{gathered} -(2x-2)>8 \\ mu\text{ltiply by -1 both sides} \\ 2x-2\text{ <-8} \\ 2x<\text{ -8+2} \\ 2x<-6 \\ x<-3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lib11eaasb2bvcny8e43n7ok6psmu540o7.png)
the second solution is the interval (-infinite, -3)
(-infinite, -3) ∩ (5, infinite)