Given
![f(x)=(3)/(7)x^2+2x^3](https://img.qammunity.org/2023/formulas/mathematics/college/c3ryn6e914xh2e9r53p4m1l8nb7htfc8qc.png)
You have to calculate f(1/2) to do so, replace the formula with x=1/2
![f((1)/(2))=(3)/(7)((1)/(2))^2+2((1)/(2))^3](https://img.qammunity.org/2023/formulas/mathematics/college/7ddc0p7m2lygbykz3i9b8tx7guqqwfyv5j.png)
Following the order of operations, you have to solve the exponents first, then the multiplications and finally the addition.
1) Solve the exponents
![f((1)/(2))=(3)/(7)\cdot(1)/(4)+2\cdot(1)/(8)](https://img.qammunity.org/2023/formulas/mathematics/college/t576vmfbvoauot9bc6pj63uyxvw4av5d14.png)
2) Solve the multiplications
![\begin{gathered} f((1)/(2))=(3)/(7)\cdot(1)/(4)+2\cdot(1)/(8) \\ f((1)/(2))=(3)/(28)+(1)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6qfjk2qgi9oggjm8n3cv82v51bfjlmygv8.png)
3) Solve the adition and simplify is necessary
![\begin{gathered} f((1)/(2))=(3)/(28)+(1)/(4)=(3+7)/(28) \\ f((1)/(2))=(10)/(28)=(5)/(14) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/187b3ffy8vp52r6rexmnowv7d3nvv6cyrz.png)