ANSWER and EXPLANATION
We want to prove that:
![\sin(x+\pi)=-\sin x](https://img.qammunity.org/2023/formulas/mathematics/college/gci8x7orkzlgh6w8rol4a22ayakjlsqmg7.png)
Let us start with the left-hand side of the equation.
Using trigonometric identities for sine, we have that:
![\sin(A+B)=\sin A\cos B+\sin B\cos A](https://img.qammunity.org/2023/formulas/mathematics/college/antjfvx6w0r5me3js0liammu0q6t86chps.png)
Applying this identity to the left-hand side of the equation:
![\sin(x+\pi)=\sin x\cos\pi+\sin\pi\cos x](https://img.qammunity.org/2023/formulas/mathematics/college/4hcvx1e70wkp7jos20y09it1sopamqlncq.png)
We know that:
![\begin{gathered} \cos\pi=-1 \\ \sin\pi=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kxnw33l0wro89r3f7qmd7wna8rc1mqdcqe.png)
Substituting those values into the above expression:
![\begin{gathered} \sin x(-1)+(0)\cos x \\ \Rightarrow-\sin x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/690r2qvxknfmeiopnnoyres13ygzaq9sog.png)
Since the left-hand side of the equation is equal to the right-hand side, we have that it has been proven.