the system has not solution
Step-by-step explanationgiven
![\begin{gathered} 8x-24y=1\Rightarrow equation(1) \\ -x+3y=1\Rightarrow equation(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uaxdqzbftaiu1w4e0vs0e0yhhl19x3l9nk.png)
Step 1
a) mutiply equation (2) by 8 to Make the x coefficients of one variable opposites.
![\begin{gathered} -x+3y=1\operatorname{\Rightarrow}equat\imaginaryI on(2)*8 \\ -8x+24y=8 \end{gathered}]()
b) now, add the result to equation(1)
![\begin{gathered} -8x+24y=8 \\ 8x-24y\text{ }=1 \\ ........................... \\ 0=9\Rightarrow indetermination \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e9tp8cpwbq9t2c4ako482ayttqlot9cfli.png)
when we get a indetermination it means the system has not solution , so the answer is
the system has not solution
I hope this helps you