Quadratic Equation is represented by
![ax^2+\text{ bx + c= 0}](https://img.qammunity.org/2023/formulas/mathematics/college/40s35dphbn8aq0g7xeo6l19w23rvlniveq.png)
a = 0.7, b = -210, c = 35,616
Given the enormity of the values of A, B & C, we cannot solve using the factorization method. We will have to use the quadratic formula to solve
![x=\frac{-b\text{ }\pm\text{ }\sqrt{b^2-\text{ 4ac}}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/uwsajjql5w6f30arumayaznr413mb07mte.png)
Substitute the values of a, b & c into the quadratic formula, we have:
![x=\frac{-(-210)\text{ }\pm\text{ }\sqrt{(-210^2)\text{ - 4 (}0.7\cdot\text{ 35616)}}}{2\text{ (0.7)}}](https://img.qammunity.org/2023/formulas/mathematics/college/14k10fwmcn1jchz05f5ly381wzpfatnyjw.png)
x = undefined