211k views
3 votes
Hi, can you help me answer this question please, thank you

Hi, can you help me answer this question please, thank you-example-1

1 Answer

3 votes

Given the following parameters


\begin{gathered} \sigma\Rightarrow s\tan dard\text{ deviation=0.4} \\ n\Rightarrow\text{sample size=20} \\ \text{Significance level}\Rightarrow95\text{ \%} \\ z_{(\alpha)/(2)}=1.960 \end{gathered}

To find the mean of the data, we will have to use


\begin{gathered} \bar{x}=(\Sigma x_i)/(n) \\ \Sigma x_i=3497.76 \\ n=20 \\ \bar{x}=(3497.76)/(20) \\ =174.888 \end{gathered}

Using the confidence interval formula of


CI=\bar{x}\pm z_{(\alpha)/(2)}*\frac{\sigma}{\sqrt[]{n}}

Substitute for all values to find the confidence interval.


\begin{gathered} CI=174.888\pm1.960*\frac{0.4}{\sqrt[]{20}} \\ =174.888\pm1.960*0.0894427191 \\ =174.888\pm0.175 \end{gathered}

Hence, the confidence interval is


174.888\pm0.175

The critical value is


1.960

The standard error of the mean is


\sigma_{\bar{x}}=\frac{\sigma}{\sqrt[]{n}}=\frac{0.4}{\sqrt[]{20}}=0.089

The confidence interval is


(174.71,175.07)

User Anatalia
by
5.4k points