The coefficient of variation CV is a relative measure of variation, as mentioned in the text, it describes the variability of the sample as a percentage of the mean.
To calculate the coefficient of variation you have to use the following formula:
Where
CV is the coefficient of variation
S is the sample standard deviation
Xbar is the sample mean
Given the data sets of heights and weights, to determine the CV of each sample, you have to calculate the mean value and standard deviation of them.
To calculate the mean value of a sample you have to use the following formula:
Where
∑x is the sum of each observation
n is the total number of observations
To calculate the standard deviation you have to calculate the variance of the sample and then calculate its square root.
The formula for the variance is
And the standard deviation is
Where
∑x² is the sum of squares of the observations
∑x is the sum of each observation
n is the total number of observations
1) Heights:
There is a total of 12 heights recorded in the table, so the sample size is n₁=12
Before calculating the mean and standard deviation you have to calculate the sum and sum of squares of the heights.
Mean (xbar₁)
Variance (S₁²)
Standard deviation (S₁)
Coefficient of variation (CV₁)
2)Weights
There is a total of 12 weights on the table, so the sample size is n₂=12
As before, to calculate the mean and standard deviation you have to calculate the sum and sum of squares of the 12 weights:
Mean (xbar₂)
Variance (S₂²)
Standard deviation (S₂)
Coefficient of variation (CV₂)
The coefficient of variation of the heights CV₁=5.4% is significantly smaller than the coefficient of variation of the weights CV₂=10.60%, which indicates that the data set of the heights have less variability than the data set of the weights.