Let:
![\begin{gathered} y=(1)/(3)x-3 \\ y=-2x+4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tswm1qlvlhfsnwm1gbrr9y0ha1tpb945lw.png)
![A(3,4)=(x,y)](https://img.qammunity.org/2023/formulas/mathematics/college/jtzd549ttj4rb51gxi9bvy5282nuewg254.png)
Let's evaluate the point into the line 1:
![\begin{gathered} x=3,y=4 \\ 4=(1)/(3)(3)-3 \\ 4=1-3 \\ 4=-2 \\ False \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r7odh2eyukkhebzcxwcth1l3cb93stbg7e.png)
Therefore, the point is not on the line 1.
The algebraic representation is:
![4=(1)/(3)\cdot3-3](https://img.qammunity.org/2023/formulas/mathematics/college/fvdaxze48qjkzzxykzhvs9e4xmee4u3pil.png)
------------------------------
Let's evaluate the point into the line 2:
![\begin{gathered} x=3,y=4 \\ y=-2x+4 \\ 4=-2(3)+4 \\ 4=-6+4 \\ 4=-2 \\ False \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nut3s2kpkh97t2e14s0hglatdokbb5zaz8.png)
Therefore, the point is not on the line 2.
The algebraic representation is:
![4=-2\cdot3+4](https://img.qammunity.org/2023/formulas/mathematics/college/56oydjzz6qc7na51ban3h7543wz3uhqxrp.png)
The point is not a solution for both equations