28.8k views
4 votes
If sin x + cos x = 5/4 and sin (2x) in simplest terms is p/q, compute pq.Note: sin (2x) = 2 sin x cos x

1 Answer

3 votes

SOLUTION

Write out the given information


\begin{gathered} \sin x+\cos x=(5)/(4) \\ \\ \sin 2x=2\sin x\cos x \end{gathered}

From the expression given


\begin{gathered} \sin x+\cos x=(5)/(4) \\ \text{Square both sides } \\ (\sin x+\cos x)^2=((5)/(4))^2 \end{gathered}

Then, we have


\begin{gathered} \sin ^2x+2\sin x\cos x+\cos ^2x=(25)/(16) \\ \text{rearrange } \\ \sin ^2x+\cos ^2x+2\sin x\cos x=(25)/(16) \end{gathered}

Recall that


\begin{gathered} \sin ^2x+\cos ^2x=1 \\ \text{and} \\ \sin 2x=2\sin x\cos x \\ \end{gathered}

Substitute into the expression above


1+\sin 2x=(25)/(16)

Subtract 1 from both sides


\begin{gathered} 1-1+\sin 2x=(25)/(16)-1 \\ \text{Then} \\ \sin 2x=(9)/(16) \end{gathered}

Hence


\begin{gathered} \sin 2x=(p)/(q)=(9)/(16) \\ \\ \text{where } \\ p=9,q=16 \end{gathered}

Therefore for pq, we have


pq=p* q=9*16=144

Hence

pq=144

User Darlesson
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories