SOLUTION
From the question, the ball's height in meters is represented by the equation
![h=2+25t-5t^2](https://img.qammunity.org/2023/formulas/mathematics/college/xhpcx4pic5yire12ogsvou2v6m3qu1fufp.png)
Now we are told to find all values of t, for which the ball's height is 12 meters.
This means that h = 12 meters.
So that means
![\begin{gathered} h=2+25t-5t^2=12 \\ So\text{ we have } \\ 12=2+25t-5t^2 \\ 2+25t-5t^2=12 \\ -5t^2+25t+2-12=0 \\ -5t^2+25t-10=0 \\ \text{ multiplying by minus sign we have } \\ -(-5t^2+25t-10=0 \\ 5t^2-25t+10=0 \\ \text{dividing through by 5 we have } \\ t^2-5t+2=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dc56pjnu4z6ex1zwcof546u87ygvt3dui8.png)
So now solving the quadratic equation for t, we have
![\begin{gathered} t^2-5t+2=0 \\ t=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ \text{Where a = 1, b = -5, c =2 } \\ t=\frac{-(-5\pm\sqrt[]{(-5)^2-4*1*2}}{2*1} \\ t=\frac{5\pm\sqrt[]{17}}{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xbx5y4lw5oewr9zr2huwdn6nyhm4hbm5y7.png)
So, either
![\begin{gathered} t=\frac{5+\sqrt[]{17}}{2} \\ t=4.56155281 \\ t=4.56\sec s \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l8lfn3a7b1vkhx1iq52z0zpjpz0d038tta.png)
Or
![\begin{gathered} t=\frac{5-\sqrt[]{17}}{2} \\ t=0.43844718 \\ t=0.44\sec s\text{ } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6q2j9vwkwsrqfe38ahdc3sanx49o92l9j9.png)
Hence the answer is t = 4.56 secs or 0.44 secs