The given functions are
![\begin{gathered} f(x)=2^z \\ g(x)=2x+1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sst4l8ucd7boxwiwsxv3w9pza5axjob455.png)
First, we have to find the composite function
![(f\circ g)(x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/q2jaqr9ioobwh5yqddx52oo1tt6s8hbyab.png)
We have to enter g(x) inside f(x), as follows
![(f\circ g)(x)=2^((2x+1))](https://img.qammunity.org/2023/formulas/mathematics/college/whscp5i103k8qn19eb5s4lirwrblnnjxjf.png)
Now, we evaluate this composition when x = 0.
![(f\circ g)(0)=2^((2(0)+1))=2^1=2](https://img.qammunity.org/2023/formulas/mathematics/college/g52l6ei2wfge1ffo2jrwxrko2l0g8k2zvv.png)
Therefore, the evaluation of the first case gives 2.
Now, we find the second composition, this time we have to enter f(x) inside g(x).
![(g\circ f)(x)=2(2^x)+1](https://img.qammunity.org/2023/formulas/mathematics/college/ra559ibotqe9365sn63khyu6i1rpxiixz9.png)
We evaluate the composition when x = 2.
![(g\circ f)(2)=2(2^2)+1=2(4)+1=8+1=9](https://img.qammunity.org/2023/formulas/mathematics/college/s5xvfp0uptplv8h8axt677e4e3zshtqh1f.png)
Therefore, the evaluation of the second case gives 9.