Answer:
![\text{The relation is }\lbrace(9.3,18),(9.1,21),(8.6,30),(8.9,45),(8.4,50),(8.2,65)\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/mcreklzyreavzyfm4etif9w8nvrl5zfiy0.png)
Explanations:
Given the coordinate that represents the ordered pair of the function expressed as:
![f=\mleft\lbrace(18,9.3),(21,9.1),(30,8.6),(45,8.9),(50,8.4),(65,8.2)\mright\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/z8a8ggkxtzobrzb4bkxan62dny5frkrahj.png)
The set of the inverse of the function will be determined by simply switching the coordinates of the function. The inverse function rule is described as:
![(x,y)\rightarrow(y,x)](https://img.qammunity.org/2023/formulas/mathematics/college/xrxzofqrju7bzvtyrl9rd71hrft58h54y4.png)
Applying this rule, the inverse of the set of ordered pairs will be given as:
![f^(-1)(x)=\lbrace(9.3,18),(9.1,21),(8.6,30),(8.9,45),(8.4,50),(8.2,65)\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/egxg8a8eawmgxsq2lxfgj2kvwxq18k14z4.png)
This gives the relation of its inverse function.