The equation of line passing through the points is given by,
![(y-y_1)/(y_2-y_1)=(x-x_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/college/y3htm86mupzj3pmgn31maj2nuw5l95fen7.png)
Let,
![\begin{gathered} (x_(1,)y_1)=(-5,\text{ -5}) \\ (x_(2,)y_2)=(10,\text{ -2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3c24aw7nqwsjiv7i9119jjnpem1ckqbq17.png)
Then the equation of the line is,
![\begin{gathered} (y-(-5))/(-2-(-5))=(x-(-5))/(10-(-5)) \\ (y+5)/(3)=(x+5)/(15) \\ 15y+75=3x+15 \\ 3x-15y=60 \\ x-5y=20 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dq5xq6u3vscgyekotez8qubvgw52zu99y9.png)
Converting the above equation into the intercept form,
Dividing the equation on both sides by 20,
![\begin{gathered} (x)/(20)-(5y)/(20)=1 \\ (x)/(20)+(y)/(-4)=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wnjqrihz1200p7usrlef5z3ablb75jrqhf.png)
On comparing the above equation with the intercept form
![(x)/(a)+(y)/(b)=1](https://img.qammunity.org/2023/formulas/mathematics/college/xb9g6tutgm0yln4sqsbqmmf3umsljoemrm.png)
We get,
x-intercept is, a=20 and the y-intercept is, b=-4