The probability that an adult knows what he will have for dinner: p = 0.28
We define event A as follows:
A: An adult knows what he will have for dinner
Then, if we ask 22 adults, the probability that more than 7 will say "yes" is given by the binomial distribution:
![P(X=x)=(n!)/((n-x)!\cdot x!)\cdot p^x\cdot(1-p)^(n-x)](https://img.qammunity.org/2023/formulas/mathematics/college/ay5xd458oxs6u6sal9wkg349925mzgr3fp.png)
From the problem, we identify:
![\begin{gathered} n=22 \\ p=0.28 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1koohjzh9yjoxl4th9fx2byr2vfx416vli.png)
Then:
![P(X=x)=(22!)/((22-x)!\cdot x!)\cdot0.28^x\cdot0.72^(22-x)...(1)](https://img.qammunity.org/2023/formulas/mathematics/college/4w9te83s3sl87sg57kwgkfs2c1rqwoaqwg.png)
Using the definition of the complement of an event, the probability that more than 7 will say yes is equivalent to:
![P(X\gt7)=1-P(X\leqslant7)...(2)](https://img.qammunity.org/2023/formulas/mathematics/college/g4s86zg009zk20f0g7b3wbyroky5mwon2y.png)
Where:
![P(X\leqslant7)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)+P(X=6)+P(X=7)](https://img.qammunity.org/2023/formulas/mathematics/college/ay33n1subclfbubkp1f2je5ua5bcneuda7.png)
Using (1), we find each probability:
![P(X=0)=(22!)/((22-0)!\cdot0!)\cdot0.28^0\cdot0.72^{^(22-0)}=0.000726633](https://img.qammunity.org/2023/formulas/mathematics/college/wrpzc2u5n4lr22hx5td6runc87k6ktdzl1.png)
![P(X=1)=(22!)/((22-1)!\cdot1!)\cdot0.28^1\cdot0.72^{^(22-1)}=0.00621675](https://img.qammunity.org/2023/formulas/mathematics/college/namtysvfh2ylnudgqeptka06nyu8irhxkz.png)
![P(X=2)=(22!)/((22-2)!\cdot2!)\cdot0.28^2\cdot0.72^{^(22-2)}=0.025385](https://img.qammunity.org/2023/formulas/mathematics/college/m7t23bp8gjj48wyjdxdclqmf5vt0ougbqz.png)
![P(X=3)=(22!)/((22-3)!\cdot3!)\cdot0.28^3\cdot0.72^{^(22-3)}=0.0658131](https://img.qammunity.org/2023/formulas/mathematics/college/cc7bjgosob0cc3nb4ni5sttmskycgkq503.png)
![P(X=4)=(22!)/((22-4)!\cdot4!)\cdot0.28^4\cdot0.72^{^(22-4)}=0.121571](https://img.qammunity.org/2023/formulas/mathematics/college/8prjpkxhv99jr3l0c7wu9s44o5m4vfzeih.png)
![P(X=5)=(22!)/((22-5)!\cdot5!)\cdot0.28^5\cdot0.72^{^(22-5)}=0.1702](https://img.qammunity.org/2023/formulas/mathematics/college/mrjnbxy41mb9eyoi0wh1pjt74comradcz2.png)
![P(X=6)=(22!)/((22-6)!\cdot6!)\cdot0.28^6\cdot0.72^{^(22-6)}=0.187535](https://img.qammunity.org/2023/formulas/mathematics/college/199a5r13etxe8dpwnhvy4m1u6hllam5txy.png)
![P(X=7)=(22!)/((22-7)!\cdot7!)\cdot0.28^7\cdot0.72^{^(22-7)}=0.166698](https://img.qammunity.org/2023/formulas/mathematics/college/bjl9mndr05qsjepv4rquh6nm8zxhw7vwey.png)
Taking the sum of all of them, and using (2):
![\begin{gathered} P(X>7)=1-0.744146 \\ \\ \therefore P(X>7)=0.255854 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8pa04ybf8fmfh85nqcpzwq6w3omrfoo8im.png)