Given:
the following population of N = 8
scores: 1, 3, 1, 10, 1, 0, 1, 3
We will find the variance and standard deviation
We will use the following formula:
![variance=s^2=(\sum(x-\mu)^2)/(N)](https://img.qammunity.org/2023/formulas/mathematics/college/1mt07vpxx59gjw799zr5n8skeyujmr56fo.png)
First, we will find the mean (μ):
![μ=(sum)/(N)=(1+3+1+10+1+0+3+1)/(8)=(20)/(8)=2.5](https://img.qammunity.org/2023/formulas/mathematics/college/iv4iwlibqdr5f889cxmlu7us7rv46481kt.png)
Construct the following table:
Data (x - μ) (x-μ)²
1 (1-2.5) 2.25
3 (3-2.5) 0.25
1 (1-2.5) 2.25
10 (10-2.5) 56.25
1 (1-2.5) 2.25
0 (0-2.5) 6.25
1 (1-2.5) 2.25
3 (3-2.5) 0.25
Now, find the sum of (x-μ)²
![\sum(x-\mu)^2=2.25+0.25+2.25+56.25+2.25+6.25+2.25+0.25=72](https://img.qammunity.org/2023/formulas/mathematics/college/1q54kk3ndk2jzko4ma4h1q42zlu8l7lemx.png)
So, the variance will be:
![variance=s^2=(72)/(8)=9](https://img.qammunity.org/2023/formulas/mathematics/college/7wetwx0xihc8sa6079i6f7gbboeml0r56j.png)
And the standard deviation will be:
![standard\text{ }deviation=\sigma=√(s^2)=√(9)=3](https://img.qammunity.org/2023/formulas/mathematics/college/eeuj445pmb9k55z62v1mogh82n50qz9i34.png)
So, the answer will be:
Variance = 9
The standard deviation = 3