Answer:
The length of x is;

Step-by-step explanation:
Given the figure in the attached image;
The length of the sides and angle of the triangle are give as;

Recall that the law of cosines can be expressed as;

Since in this case we want to calculate b=AC=x;
![\begin{gathered} b^2=a^2+c^2-2ac\cos B \\ b=\sqrt[]{a^2+c^2-2ac\cos B} \\ x=\sqrt[]{a^2+c^2-2ac\cos B} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b9dv188t7j35nf7a9m7vq5bgbvu8akhmfk.png)
Substituting the given values;
![\begin{gathered} x=\sqrt[]{a^2+c^2-2ac\cos B} \\ x=\sqrt[]{35.2^2+31.9^2-2(35.2)(31.9)\cos 79^(\circ)} \\ x=\sqrt[]{35.2^2+31.9^2-2(35.2)(31.9)\cos79^(\circ)} \\ x=\sqrt[]{1828.1387905} \\ x=42.7567 \\ x=42.8\text{ cm} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/odkexvvh6n66dx5yuj6q03f859dr2pj3nf.png)
Therefore, the length of x is;
