218k views
4 votes
Factor completely:u^2y^4-81u^2

User Ransford
by
4.4k points

1 Answer

2 votes

To solve this question we will use the following properties:


\begin{gathered} a^2-b^2=(a+b)(a-b), \\ (ab)^n=a^{\text{n}}b^n\text{.} \end{gathered}

Factoring u² we get:


u^2y^4-81u^2=u^2(y^4-81)\text{.}

Now, notice that:


\begin{gathered} y^4=(y^2)^2, \\ 81^{}=9^2\text{.} \end{gathered}

Substituting the above results in u²(y⁴-81) we get:


u^2((y^2)^2-9^2)\text{.}

Using the first property we get:


u^2(y^2+9)(y^2-9)

Now, notice that 9=3², therefore:


u^2(y^2+9)(y^2-9)=u^2(y^2+9)(y^2-3^2)=u^2(y^2+9)(y^{}+3)(y-3)\text{.}

Answer:


u^2(y^2+9)(y^{}+3)(y-3)\text{.}

User Steve Beer
by
3.9k points