Answer:
The slope of the other line is;
![m_2=-2](https://img.qammunity.org/2023/formulas/mathematics/college/6xoo7zaw65203chu9oze25tl3mi1132kqt.png)
Step-by-step explanation:
Given that the two lines are perpendicular to each other and the slope of one line is;
![m_1=(1)/(2)_{}_{}](https://img.qammunity.org/2023/formulas/mathematics/college/vguymqo4l7adfwqnfz8v10l67m0yzsgbfa.png)
Recall that when two lines are perpendicular their slopes are negative reciprocal of each other;
![\begin{gathered} m_1m_2=-1 \\ m_2=-(1)/(m_1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lcv686rh0451hn8cgxi4r57rnkvov4c2f6.png)
Substituting the given values;
![\begin{gathered} m_2=-(1)/(m_1)=(-1)/(((1)/(2))) \\ m_2=-(2)/(1) \\ m_2=-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5qoqcs6omlepaujjp7q4ygx5stt344ffih.png)
Therefore, the slope of the other line is;
![m_2=-2](https://img.qammunity.org/2023/formulas/mathematics/college/6xoo7zaw65203chu9oze25tl3mi1132kqt.png)