233k views
5 votes
I'm not understanding 9th grade math right now what we are currently learning is finding Solutions of quadratic equations by factoring, could you help me?

User Rhdoenges
by
6.1k points

1 Answer

3 votes

EXPLANATION

Given the equation:


x^2\text{ + 7x -18 = 0}

We can apply the quadratic equations formula as shown as follows:

Break the expression into groups:

For:


ax^2+bx+c

Find u,v such that u*v = a*c and u+v = b and group into (ax^2+ux)+(vx+c)

a=1, b=7, c=-18

u*v=-18, u+v = 7

Find the primer factors of 18:

18 / 2 = 9

9 / 3 = 3

2,3 are all prime numbers, therefore no further factorization is possible.

Multiply the prime factors of 18: 6,9

Add the prime factors: 2,3

Add 1 and the number 18 itself

1, 18

The factors of 18:

1, 2, 3 , 6, 9, 18

Negative factors of 18:

Multiply the factors by -1 to get the negative factors:

-1, -2, -3, -6, -9, -18

For every two factors such that u*v=-18 , check if u+v = 7:


\mathrm{Check}\: u=1,\: v=-18\colon\quad \: u\cdot v=-18,\: u+v=-17\quad \Rightarrow\quad \mathrm{False}
\mathrm{Check}\: u=2,\: v=-9\colon\quad \: u\cdot v=-18,\: u+v=-7\quad \Rightarrow\quad \mathrm{False}
\mathrm{Check}\: u=3,\: v=-6\colon\quad \: u\cdot v=-18,\: u+v=-3\quad \Rightarrow\quad \mathrm{False}
\mathrm{Check}\: u=6,\: v=-3\colon\quad \: u\cdot v=-18,\: u+v=3\quad \Rightarrow\quad \mathrm{False}
\mathrm{Check}\: u=9,\: v=-2\colon\quad \: u\cdot v=-18,\: u+v=7\quad \Rightarrow\quad \mathrm{True}
\mathrm{Check}\: u=18,\: v=-1\colon\quad \: u\cdot v=-18,\: u+v=17\quad \Rightarrow\quad \mathrm{False}

u=9, v=-2

Group into:


(ax^2+ux)+(vx+c)
(x^2-2x)+(9x-18)

Factor out x from x^2 -2x

x^2 -2x

Factor out common term x:

=x(x-2)

Factor out 9 from 9x - 18:

Rewrite 18 as 2*9:

9x - 9*2

Factor out common term 9:

9(x-2)

=x(x-2) + 9(x-2)

Factor out common term x-2:


=\mleft(x-2\mright)\mleft(x+9\mright)

The solution to the quadratic equation x^2 + 7x - 18 = 0 applying the factorizing method is:


=(x-2)(x+9)

User Chris Klepeis
by
6.4k points