We will interpret the question as follows:
![(6x+2.4)\colon(3)/(59)=2.25\colon(1)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/nuv6a6g3zz1aebj0v11i2rec43gr38a3tq.png)
The symbol, :, denotes the ratio of two quantities. Then, we can rewrite it as follows:
![((6x+2.4))/((3)/(59))=(2.25)/((1)/(3))](https://img.qammunity.org/2023/formulas/mathematics/college/bf9qp7j28kquajuu68wk6ugi33u0ra7wnh.png)
Using proportions, we can multiply the means of the proportions by the extremes of them as follows:
![(1)/(3)(6x+2.4)=2.25\cdot(3)/(59)](https://img.qammunity.org/2023/formulas/mathematics/college/bahwzpwwkfis219a49l9283btx9fdb3czl.png)
We have that:
![2.25=2+(1)/(4)=(8+1)/(4)=(9)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/79eiv08l5oywh5tb56kt3lvaai90f7kkp3.png)
And
![2.4=(24)/(10)=(12)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/pq5big1ac9v97jf0muupbyg5ye0fi570kj.png)
Then, we have:
![(1)/(3)(6x+2.4)=2.25\cdot(3)/(59)\Rightarrow(1)/(3)(6x+(12)/(5))=(9)/(4)(3)/(59)](https://img.qammunity.org/2023/formulas/mathematics/college/phunw402zfdmp5fld5169aynqoac7lewxv.png)
We can multiply by 3 to both sides of the equation:
![3\cdot(1)/(3)(6x+(12)/(5))=3(9)/(4)(3)/(59)](https://img.qammunity.org/2023/formulas/mathematics/college/2ge51p1mkeha37n4dnvgvbkracpucm6ako.png)
![6x+(12)/(5)=(9)/(4)(9)/(59)](https://img.qammunity.org/2023/formulas/mathematics/college/1t6xt11sn9clyhauljpz0p1a5rebv90p72.png)
Subtracting 12/5 from both sides of the equation:
![6x+(12)/(5)-(12)/(5)=(9)/(4)(9)/(59)-(12)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/ipxyxsjevmkw6njxnmupwi8y0htvkk677f.png)
![6x=(9)/(4)(9)/(59)-(12)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/f1igu8zv1owmme7h28ib34edp8et5zjq71.png)
If we multiply both sides by 1/6, we finally have:
![(1)/(6)6x=(1)/(6)((9)/(4)(9)/(59)-(12)/(5))](https://img.qammunity.org/2023/formulas/mathematics/college/1xpzrtxu1ts0177tb6aq44kr0k7p7nivrf.png)
![x=(1)/(6)((9)/(4)(9)/(59)-(12)/(5))=-(809)/(2360)\approx$$-0.342796610169$$](https://img.qammunity.org/2023/formulas/mathematics/college/j26q23eys88ladukrecmhw4ka41jksza0l.png)
In summary, the value for x in fractional and also in decimal form is:
![x==-(809)/(2360)\approx$$-0.342796610169$$](https://img.qammunity.org/2023/formulas/mathematics/college/qqaska0g11yxn4ulxpmne3b072z72t6wzp.png)