The sequence we have is:
![3,11,19,27,...](https://img.qammunity.org/2023/formulas/mathematics/college/1huml8cvwowj8b98i0cnjt13k6567iguqd.png)
To find the arithmetic sequence, we use the arithmetic sequence formula:
![a_n=a_1+(n-1)(d)](https://img.qammunity.org/2023/formulas/mathematics/college/yds8nptz8ibiper9z4czww2ny95rtg4t4q.png)
Where
![a_n\longrightarrow\text{ nth term}](https://img.qammunity.org/2023/formulas/mathematics/college/lsvpcp2fj9cpf47bog7rfcwj95blcsgnn7.png)
Note: n can be any number
![a_1\longrightarrow\text{ The first term}](https://img.qammunity.org/2023/formulas/mathematics/college/opintiq6zxn3lijeznw79axd2nn4f35x1c.png)
Since the first term, in this case, is 3:
![a_1=3](https://img.qammunity.org/2023/formulas/mathematics/high-school/n688gy2xnjkun1roo5flp0vidj46nmcctm.png)
And d is the common difference between the terms.
As we can see in the following image, the common difference is +8:
![d=8](https://img.qammunity.org/2023/formulas/mathematics/college/3rgei2nao95mtim0hrrl1jyxfktl2vvm6q.png)
So the rule for the arithmetic sequence for a term "n" is:
![a_n=3+(n-1)(8)](https://img.qammunity.org/2023/formulas/mathematics/college/739a9m3qkzqlc4n76nk9oqvjzlhrzwl1gd.png)
Answer:
![a_n=3+(n-1)(8)](https://img.qammunity.org/2023/formulas/mathematics/college/739a9m3qkzqlc4n76nk9oqvjzlhrzwl1gd.png)