Given:
Given that a graph of
![2x=6y+8](https://img.qammunity.org/2023/formulas/mathematics/college/tsjnr6ix2sjc45xp01db9sus22ezny913x.png)
And
![\begin{gathered} m=3 \\ y-int=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/il40ykbd4o78vxnzwxiz87wd5ai7qgutjj.png)
Required:
To find the error in the given statement.
Step-by-step explanation:
Slope-intercept form is
![y=mx+b](https://img.qammunity.org/2023/formulas/mathematics/high-school/smsb8cbft03lwblmi49nf2l6jby2ofxzws.png)
where m is the slope and b is the y-intercept.
Consider the given equation
![2x=6y+8](https://img.qammunity.org/2023/formulas/mathematics/college/tsjnr6ix2sjc45xp01db9sus22ezny913x.png)
Here the slope intercept form is,
![\begin{gathered} 2x=6y+8 \\ 6y=2x-8 \\ y=(2x)/(6)-(8)/(6) \\ y=(x)/(3)-(4)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fg238i2tsdi2jsqxlcp0s7yyy7p2vs5wu1.png)
Now the slope is,
![m=(1)/(3)](https://img.qammunity.org/2023/formulas/mathematics/middle-school/b5kai6nxmqxas2mmuv95gl93gz9nkisg6n.png)
And y-intercept is,
![y-int=-(4)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/lm0xsvpdzthmnr064902jbnfoslkciq3mz.png)
The correct graph is,
Final Answer:
The error is,
Intercept form:
![\begin{gathered} x=3y+4 \\ m=3 \\ y-int=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p4xlvwp5vgsm90pi6nbri3efa7ojhxrvnn.png)