141k views
3 votes
5x^2-5x+6=0 Is this solution two distinct rational solution, or two distinct irrational solutions, or two complex solutions, or a single rational solution?

User Sskoko
by
8.4k points

1 Answer

3 votes

Step-by-step explanation

Since we have the function 5x^2-5x+6=0


\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)
\mathrm{For\:}\quad a=5,\:b=-5,\:c=6
x_(1,\:2)=(-\left(-5\right)\pm √(\left(-5\right)^2-4\cdot \:5\cdot \:6))/(2\cdot \:5)

Computing the powers:


=√(5^2-4\cdot \:5\cdot \:6)
\mathrm{Multiply\:the\:numbers:}\:4\cdot \:5\cdot \:6=120
=√(5^2-120)

Apply imaginary number rule:


=√(5^2-120)
=√(95)i
x_(1,\:2)=(-\left(-5\right)\pm √(95)i)/(2\cdot \:5)
Separate\:the\:solutions
x_1=(-\left(-5\right)+√(95)i)/(2\cdot \:5),\:x_2=(-\left(-5\right)-√(95)i)/(2\cdot \:5)

Simplifying:


\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}
x=(1)/(2)+i(√(95))/(10),\:x=(1)/(2)-i(√(95))/(10)

In conclusion, the function have two complex solutions.

User Daniel Seither
by
8.1k points