141k views
3 votes
5x^2-5x+6=0 Is this solution two distinct rational solution, or two distinct irrational solutions, or two complex solutions, or a single rational solution?

User Sskoko
by
8.5k points

1 Answer

3 votes

Step-by-step explanation

Since we have the function 5x^2-5x+6=0


\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)
\mathrm{For\:}\quad a=5,\:b=-5,\:c=6
x_(1,\:2)=(-\left(-5\right)\pm √(\left(-5\right)^2-4\cdot \:5\cdot \:6))/(2\cdot \:5)

Computing the powers:


=√(5^2-4\cdot \:5\cdot \:6)
\mathrm{Multiply\:the\:numbers:}\:4\cdot \:5\cdot \:6=120
=√(5^2-120)

Apply imaginary number rule:


=√(5^2-120)
=√(95)i
x_(1,\:2)=(-\left(-5\right)\pm √(95)i)/(2\cdot \:5)
Separate\:the\:solutions
x_1=(-\left(-5\right)+√(95)i)/(2\cdot \:5),\:x_2=(-\left(-5\right)-√(95)i)/(2\cdot \:5)

Simplifying:


\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}
x=(1)/(2)+i(√(95))/(10),\:x=(1)/(2)-i(√(95))/(10)

In conclusion, the function have two complex solutions.

User Daniel Seither
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.