So we need to solve the following inequality:
![\lvert(3)/(x)-2\rvert\leq5](https://img.qammunity.org/2023/formulas/mathematics/college/layx87ox6t1f0z57nchwupugexsr6gfhkn.png)
The first thing to do here is getting rid of the absolute value. Remember what happen when you remove an absolute value in an inequality:
![\begin{gathered} \lvert a\rvert\leq b \\ a\leq b\text{ and }a\ge-b \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s7or84l208i451r1uzkhfuvwmh6jnctwca.png)
So we'll have two inequalities. The one multiplied by a negative sign must have the other inequality symbol. Taking this into account let's get back to our problem:
![\begin{gathered} \lvert(3)/(x)-2\rvert\leq5 \\ (3)/(x)-2\leq5\text{ and }(3)/(x)-2\ge-5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/avfyfq16dmiw0w95lgs4gt1wryj2pn4lz2.png)
Let's solve each separately. We take the first one and we add 2 to both sides:
![\begin{gathered} (3)/(x)-2\leq5 \\ (3)/(x)-2+2\leq5+2 \\ (3)/(x)\leq7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/af68zncvgelai9u97zjdps0u7xcdn47bqp.png)
Then we multiply x to both sides but first we need to note that if x is negative then we have to change the inequality symbol. So we have two cases for this inequality, x>0 and x<0.
If x>0:
![\begin{gathered} (3)/(x)\leq7 \\ (3)/(x)\cdot x\leq7x \\ 3\leq7x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i1jdybg52blyrwnrqk67we4albsjvghki3.png)
And we divide by 7:
![\begin{gathered} (3)/(7)\leq(7x)/(7) \\ (3)/(7)\leq x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o4pghllwklc866wqe8yx4e6mfain97gn1x.png)
If x<0 we have:
![\begin{gathered} (3)/(x)\leq7 \\ (3)/(x)\cdot x\ge7x \\ 3\ge7x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6vua2to73fja9i60rtife8mi4si7tbs2w0.png)
We divide both sides by 7 and we get:
![(3)/(7)\ge x](https://img.qammunity.org/2023/formulas/mathematics/college/9mwnaewgks6yqylizkitk150rmh1zwgct1.png)
Then we solve the other inequality. We add 2 to both sides:
![\begin{gathered} (3)/(x)-2+2\ge-5+2 \\ (3)/(x)\ge-3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ivwqerwqcc73skiyf4kcm2b4gx46fxzsxo.png)
And we can multiply both sides by x. If x>0 we get:
![\begin{gathered} (3)/(x)\cdot x\ge-3x \\ 3\ge-3x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6alb2mqc3lqlmlve4q6pej5ncngyp928ww.png)
Then we divide by -3. Remember that multiplying or dividing by a negative number means that we have to change the inequality symbol:
![\begin{gathered} (3)/(-3)\leq(-3x)/(-3) \\ -1\leq x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zseflxopq03ka1s4rf5g33kf4d9mec14pc.png)
If x<0 we have:
![\begin{gathered} (3)/(x)\cdot x\leq-3x \\ 3\leq-3x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/akdewu9c4sy1d4zwio7e9q2984etl5aqxw.png)
Then we divide by -3. Remember that multiplying or dividing by a negative number means that we have to change the inequality symbol:
![\begin{gathered} (3)/(-3)\ge-(3x)/(-3) \\ -1\ge x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ueblkpb9var2yggmj8g2xqpv79uxtbds1v.png)
Now let's take everything we have. If x<0 we found that:
![\begin{gathered} (3)/(7)\ge x \\ -1\ge x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2r70qrsk119yp3lczze171nx56x2n1651d.png)
Since 3/7>-1 we just need to use the second inequlity:
![-1\ge x](https://img.qammunity.org/2023/formulas/mathematics/college/h1q80f9rzwz0129f7efmh8x6qclruslmy2.png)
For x>0 we got:
![\begin{gathered} (3)/(7)\leq x \\ -1\leq x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3dk9sps0uxps9hy0qn42vzvczsvsyxzi1y.png)
Since 3/7>-1 we just need to use the first inequality:
![(3)/(7)\leq x](https://img.qammunity.org/2023/formulas/mathematics/college/s951upq9vhocf2o5pcreioh7betw4n1otg.png)
Then:
![x\leq-1\text{ and }(3)/(7)\leq x](https://img.qammunity.org/2023/formulas/mathematics/college/tkrezszbukba0w0uivblmkk8lers466rnv.png)
And that's the answer.