The vertex of the prabola whose equation is
![f(x)=ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/college/gtwfur36jgufas40j4egf3v22iz0dzre6e.png)
is (h, k), where
![\begin{gathered} h=(-b)/(2a) \\ k=f(h) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f1ge5ypsy4ovqdwi8a1hqk2p8atlqh03k3.png)
The vertex is minimum if a has positive value
The vertex is maximum if a has negative value
Since the given equation is
![f(x)=-4x^2+24x+3](https://img.qammunity.org/2023/formulas/mathematics/college/osixzh5kdepivaf42ic2jusvi9a33n4ce3.png)
a = -4
b = 24
c = 3
Let us find h
![\begin{gathered} h=(-24)/(2(-4)) \\ h=(-24)/(-8) \\ h=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z3zlcnuiu59drj14z220hpfmnurp3gxd1n.png)
Let us use h to find k
![\begin{gathered} k=f(h)=f(3) \\ k=-4(3)^2+24(3)+3 \\ k=-36+72+3 \\ k=39 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sbrf57d5n0ttmqcexvfl5xso3ap10dpcs6.png)
The vertex of the parabola is (3, 39)
Since a = -4
That means a is negative, then
The vertex is maximum